查看原文
其他

改变世界的5大常数,学过数学的人,这一辈子都不会忘记!

何谓数学?

数学家Eduardo曾这样回答

“数学是永恒,是真理,是一切的答案。

回首往昔
数学始终伴随我们左右
纵横交错的几何、繁琐复杂的运算
难以求解的方程、无从下手的猜想
......
尽管在数学道路上
有多么的坎坷、崎岖、变化莫测
但不变的是
数学之美

规则的六角蜂窝完美的黄金分割浪漫的心形函数椭圆轨迹的哈雷彗星......数学和自然万物休戚与共是浩瀚宇宙的最终本源
而这一切的发现,都离不开漫长数学史中的那一群人。
他们是科学文明的先驱者,引领数学浪潮,勇攀科技之巅;用字符谱写最动听的数学之歌,传唱于人类的历史长河上。
今天,就来讲几个数学界大咖级别的常数。

毕达哥拉斯常数

没错,就是那个引发第一次数学危机的数字——√2 ≈ 1.4142135623730950488
公元前500年,有一位牛人,叫毕达哥拉斯。如果你对这位牛人有点儿陌生,那毕达哥拉斯定理应该知道吧,那就是:直角三角形中,两直角边的平方和等于斜边的平方
在中国,这被称为“勾股定理”。
他创办了一个数学学派,叫做毕达哥拉斯学派,该学派认为:整数就像原子一样,构成了宇宙中的一切,并可以描述宇宙中的一切。宇宙间各种关系都可以用整数或整数之比来表达,除此之外,就什么都没有了。。。
而毕达哥拉斯的弟子——希勃索斯,在研究老师的定理时,发现了一个神奇的现象:边长为1的正方形,其对角线的长竟然无法用整数或整数之比表示出来!
于是,他把这个惊人的发现告诉了老师毕达哥拉斯。。。
希勃索斯本来以为老师会将这一发现公布于众,改变人们错误的认识。
没想到,老师却认为这样会动摇到毕达哥拉斯学派在学术界的统治地位,便新规定了一条纪律:谁都不准泄露存在根号2(即无理数)的秘密。
后来,天真的希勃索斯有一次无意中向别人谈到了他的发现,结果他被认为是学派的“逆贼”,被囚禁,受尽百般折磨,最后被投入爱琴海淹死。。。
关于希勃索斯的死有很多个版本,众说纷纭,但无论如何,希勃索斯都被人们当作是发现无理数的第一人。
√2就是第一个被发现的无理数,它的应用非常广泛,比如我们平常用的A4纸长宽之比就等于√2。
毕达哥拉斯树

辛钦常数

对于任意实数x,都可以写成下面的形式:
其中,a0,a1,a2……都是整数,而 [a0; a1, a2, a3, …] 就称为实数x的连分数展开
苏联数学家辛钦Khinchin
1964年,数学家辛钦证明了一个惊人的结论:对于几乎所有实数x(除了有理数、实系数二次方程的解,以及自然对数的底e等特殊情况之外),其连分数表示式的系数ai的几何平均数会收敛到一个相同的数,且与实数x的数值无关。
这个数就是辛钦常数,用表示。
不过,对于这个神秘的常数,人们了解的还是很少,除了它的精确值不容易求出之外,关于辛钦常数是否为无理数,到目前也还没有人能证明。

圆周率π

圆周率 π ≈ 3.14159是圆的周长与直径的比值,是精确计算圆周长、圆面积、球体积等几何形状的关键值,人类很早就认识到了圆周率的存在。
公元前3世纪初,欧几里得在其著作《几何原本》中就提到过圆周率是常数;
公元前2世纪左右,中国古算书《周髀算经》中有“径一而周三”的记载,也认为圆周率是常数。
而如今用来表示圆周率的希腊字母π,本来与圆周率毫无关系,只是从1736年开始,欧拉在书信和论文中都用π来表示圆周率,久而久之,人们就普遍认同π就是圆周率了。
π应该是数学中最基本、最重要、最神奇的常数了,人类对它的探索就从来没停止过,不过,从它的出现到确定它是无理数,人类就花了3000年的时间。。。
直到1761年,德国数学家朗伯(Lambert)才证明了 π 是一个无理数。
1882 年,德国数学家林德曼(Ferdinand von Lindemann)证明了圆周率 π 是一个超越数。(不满足任一个整系数代数方程的数)

自然底数e

17世纪末,伯努利(Bernoulli)发现了一个有趣的现象,会随着x的增大而越来越接近某个固定的数。
半个世纪后,欧拉才仔细研究了这个问题,并用字母 e 来表示这个常数:
他不仅求出了e ≈ 2.718,还证明了 e 是一个无理数。
跟π一样, e 也是一个超越数,于1873 年被法国数学家夏尔·埃尔米特(Charles Hermite)证明。

复常数

数学中,还有一个很特别的常数,就是虚数单位 i ,它是指 -1 的开平方,它的出现,瞬间将整个数域又扩充了一半。
而最美公式——“欧拉恒等式”就将世界上最基本的两个数字 0,1,以及数学中最重要最基本的三大常数π、e、i 都联系到了一起,干净利落,简直漂亮到了神圣的地步!

END


往期精彩回顾

必看的物理趣味GIF图,从此爱上物理!
原来金庸的武侠江湖也有这么多数学故事
为什么费马大定理在数学史上的地位如此重要?

我就知道你在看!

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存